
INCOMPLETE MULTI-VIEW CLUSTERING VIA INFERENCE AND EVALUATION

Binqiang Huang, Zhijie Huang, Shoujie Lan, Qinghai Zheng*, Yuanlong Yu*

College of Computer and Data Science, Fuzhou University, China

ABSTRACT
Multi-view clustering aims to improve the clustering perfor-
mance by leveraging information from multiple views. Most
existing works assume that all views are complete. However,
samples in real-world scenarios cannot be always observed in
all views, leading to the challenging problem of Incomplete
Multi-View Clustering (IMVC). Although some attempts are
made recently, they still suffer from the following two limita-
tions: (1) they usually adopt shallow models, which are un-
able to sufficiently explore the consistency and complemen-
tary of multiple views; (2) they lack of a suitable measure-
ment to evaluate the quality of the recovered data during the
learning process. To address the aforementioned limitations,
we introduce a novel Incomplete Multi-View Clustering via
Inference and Evaluation (IMVC-IE). Specifically, IMVC-IE
adopts the contrastive learning strategy on features of differ-
ent views to excavate the underlying information from exist-
ing samples firstly. Subsequently, massive alternative simu-
lated data are inferred for missing views and a novel evalua-
tion strategy is presented to obtain the proper data for missing
views completion. Extensive experiments are conducted and
verify the effectiveness of our method.

Index Terms— Incomplete multi-view clustering, miss-
ing data inference, data evaluation

1. INTRODUCTION

Existing Incomplete Multi-View Clustering (IMVC) methods
can be roughly categorized into two types, i.e., traditional and
deep methods [1]. Traditional IMVC methods leverage uti-
lize zero or mean values to complete the missing views [2],
and then use, for example, non-negative matrix decomposi-
tion based methods [3], subspace learning based methods [4],
kernel learning based methods [5], and graphical methods [6]
[7] to perform multi-view clustering. However, traditional
IMVC methods have limited representation capabilities and
are difficult to handle high complexity problems [8]. In re-
cent years, deep IMVC methods have gradually attracted at-
tention due to their strong generalization ability and scalabil-
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ity [9]. Deep IMVC methods usually design some kind of fill-
ing strategy to infer missing data before clustering, and then
get results based on the recovered data [10, 11, 12].

Despite the remarkable progress, most existing traditional
IMVC methods suffer from limitations of the shallow model
and naive data completion, namely, zero padding and mean
padding. For Deep IMVC methods, they ignore the evaluation
of the recovered data, which may impede the improvement of
clustering performance. To address these limitations, a novel
method, termed Incomplete Multi-View Clustering via Infer-
ence and Evaluation (IMVC-IE), is introdued in this paper.
To be specific, IMVC-IE has two components, i.e., Data In-
ference Module (DI) and Data Evaluation Module (DE).

Unlike the direct zero-padding or mean-padding, in which
the populated data are often far from the real data, DI presents
a novel strategy based on the assumption that: when samples
are sufficient, the data distribution converges to the overall
distribution. Therefore, it is possible to infer with high confi-
dence that the missing data fluctuates around the data mean.
In other words, if we generate a large number of simulated
truth data near the view data mean, the inference of missing
data can be accomplished by combining appropriate evalua-
tion methods to determine which simulated truth data is more
likely to be the true data. Obviously, DI is a statistical learn-
ing approach for missing data inference.

Regarding DE, the relationship between views is consid-
ered here. Specifically, inspired by the work of CLIP [13], we
first design a deep auto-encoder to filter the intra-view noise
[14] and map the non-missing paired data from each view to
a common similarity space, then the contrastive loss of differ-
ent views is employed to effectively excavated the underlying
relationships, which is utilized to for data evaluation. Based
on DI and DE, the proposed method can complete the missing
views effectively. Based on the recovered multi-view data, we
get the clustering results by exploring the consistency in se-
mantic space. Main contributions are as follows:
• By applying the Data Inference (DI) and the Data Evalua-
tion (DE) modules, the proposed method combines statistical
learning and deep learning. Therefore, the missing views can
be recovered with high confidence in our method.
• Based on the recovered multi-view data, the clustering re-
sults are achieved by pursuing the consistency in the semantic
space via conservative learning. Experimental results verify
the effectiveness and competitiveness of our method.



Fig. 1. General flowchart of our algorithm. Incomplete data are first fed into Data Inference Module (DI) and Data Evaluation
Module (DE) in parallel, where the former is responsible for inferencing simulated data sets based on the mean and standard
deviation of the dataset, and the latter trains a data evaluator using the existing complete paired data. Afterwards, the generated
simulated data sets and the corresponding data from other views are fed into the data evaluator to identify the best simulated
data. After recovering the missing data one by one, the complete data is feed into the semantic clustering module.

2. METHOD

Notation: Considering multi-view data {X = X(v)}Vv=1,
Xv ∈ Rdv×N , where V is the number of views, N denotes
the number of samples, and dv indicates the feature dimension
of the v-th view, we divide the data into two parts: paired data
that exists in all views, and unpaired data that exists only in
some partial views.

2.1. Data Inference Module

When the dataset has sufficient samples of the overall popu-
lation, the data distribution converges to the overall distribu-
tion, hence the missing data fluctuates around x̄, x̄ is the data
mean. Specifically, we measure the ”range of fluctuation” as
the standard deviation of each feature dimension of the data,
i.e., σ = {σ1, σ2, ..., σdv

}.In the process of generating the j-
th simulated true data of i-th data of v-th view, the generated
sample is denoted as x̃(v)

ij .
Based on the above analysis, the Data Inference (DI) mod-

ule is introduced to generate massive alternative samples for
missing views. To be specific, we first calculate the v-th view
data mean x̄(v) and the set of standard deviations for each fea-
ture dimension σ(v) = {σ(v)

1 , σ
(v)
2 , ..., σ

(v)
dv

}, and then gener-
ate a Gaussian noise with zero mean and standard deviation
equal to σ(v) which is denoted as e and can be calculated. Fi-
nally, x̃(v)

ij = x̄(v) + e form the simulated truth data. In order
to allow the simulated truth data to radiate to the real data at
a high confidence level, a collection of simulated truth data
with a size of not less than half of the dataset is generated.

2.2. Deep Evaluation Module

The evaluator is designed to select the simulated truth data
with the highest similarity to the complementary view paired
data. In order to fully explore the underlying information and
learn the compact suitable view-specific feature representa-
tions. we adopt a two-level multi-view feature representation
[14], which is specified by first extracting the low-level fea-
tures from the original dataset using an automatic coder, and
then using contrast learning to catch high-level features fo-
cusing on the public semantics of the views on top of the low-
level features.

Specifically, for the m-th view, we denote the encoder and
decoder by E(m)(Xm; θ

(m)
E ) and D(m)(Xm; θ

(m)
D ), where

θ
(m)
E and θ

(m)
D denote the network parameters, denote z(m)

i =

E(m)(x
(m)
i ) ∈ Rdz as the dz-dimensional latent features of

the i-th sample, denote x̂(m)
i = D(m)(z

(m)
i ) as the reconstruc-

tion of the i-th sample, and denote L(m)
Z as the reconstruction

loss of the input X(m) and output X̂(m). Therefore, we can

construct the loss term LZ =
M∑

m=1
L(m)
Z as follows:

M∑
m=1

L(m)
Z =

M∑
m=1

N∑
i=1

∥∥∥x(m)
i −D(m)(E(m)(x

(m)
i ))

∥∥∥2
2
. (1)

Since the feature {Z(m)}Mm=1 mixes view public infor-
mation with view private information, we treat {Z(m)}Mm=1

as a low-level feature and learn another level of features, i.e.,
high-level features {H(m)}Mm=1, We stack the feature MLP on
{Z(m)}Mm=1 to obtain high-level features {H(m)}Mm=1, where



h
(m)
i ∈ RdH and the feature MLP is a one-layer linear MLP

denoted by F ({Z(m)}Mm=1;WH). In the low-level feature
space, we utilize reconstruction goals to maintain the repre-
sentational power of {Z(m)}Mm=1 and thus avoid the problem
of model collapse. In the high-level feature space, we fur-
ther achieve the consistency goal through contrast learning
so that {H(m)}Mm=1 focuses on learning the common seman-
tics of all views. Specifically, each high-level feature h

(m)
i

has (MN−1) feature pairs, i.e., {h(m)
i , h

(n)
j }n=1,...M

j=1,...,N , where

{h(m)
i , h

(n)
i }m̸=n is an (M − 1) positive sample pair and the

remaining M(N − 1) feature pairs are negative sample pairs.
In contrast learning, the similarity of positive sample pairs
should be maximized and the similarity of negative sample
pairs should be minimized. Inspired by NT-Xent [15], cosine
distance is applied to measure the similarity between two fea-
tures. To be clear, it is formulated as follows:

d(h
(m)
i , h

(n)
j ) =

⟨h(m)
i , h

(n)
j ⟩∥∥∥h(m)

i

∥∥∥ ∥∥∥h(n)
j

∥∥∥ , (2)

where ⟨·, ·⟩ is the dot product operator. Then, the feature con-
trastive loss between H(m) and H(n) is formulated as:

l
(mn)
fc = − 1

N

N∑
i=1

log
ed(h

(m)
i ,h

(n)
j )/τF∑N

j=1

∑
v=m,n e

d(h
(m)
i ,h

(v)
j )/τF − e1/τF

.

(3)
where τF denotes the temperature parameter. In this paper,
we design an accumulated multi-view feature contrastive loss
across all views as follows:

LH =
1

2

M∑
m=1

∑
n ̸=m

l
(mn)
fc . (4)

Up to this point, once the training is complete, for a given
input, end-to-end similarity evaluation can be done with the
paired data corresponding to another viewpoint. For example,
the set of simulated data and the paired data corresponding to
the other view are fed into the evaluator, and the simulated
data with the highest cosine similarity to the paired data is
selected as the best truth data.

2.3. Clustering based on the recovered data

Semantic consistency contrast learning is introduced in order
to effectively mine the variable semantic consistency infor-
mation in the semantic space. Based on the fact that mul-
tiple views describe the same goal, we introduce a shared
classifier C(·) with parameter φ. The last layer of the clas-
sifier network is softmax. By using the classifier, we map
{X(m)}Mm=1 to a semantic space of dimension size k, where
k is the number of categories in the multi-view dataset. Due
to the diversity of specific statistical information of multiple
views, the semantic information of different views in the se-
mantic space may be confusing, which leads to diverse and

confusing results for {X(m)}Mm=1. Therefore, we constrain
that {X(m)}Mm=1 should have similar pseudo-labels. We in-
troduce contrast learning to mine consistent semantic

information in the semantic space while obtaining consis-
tent categories. Thus

Q(m) = C(E(m)(X(m);φ)) ∈ RN×k. (5)

As same as the Evaluation part, let q(m)
i ∈ Rk, then the cosine

distance between q
(m)
i and q

(n)
j is formulated as:

d(q
(m)
i , q

(n)
j ) =

⟨q(m)
i , q

(n)
j ⟩∥∥∥q(m)

i

∥∥∥∥∥∥q(n)j

∥∥∥ . (6)

The semantic contrast loss is formulated as:
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(7)
where τQ is the temperature parameter. We design the cumu-
lative multi-view semantic contrast loss on all views as:

LQ =
1

2

M∑
m=1

∑
n ̸=m

l(mn)
sc +

M∑
m=1

K∑
j=1

smj logsmj , (8)

where smj = 1
N

∑N
i=1 q

m
ij , adding this regularization term

helps to avoid assigning all samples to a single cluster [16].

3. EXPERIMENTS

In order to validate the effectiveness of our method, a number
of clustering experiments are conducted in this section. Im-
portant statistics are summarized in Table 1 and Fig. 3, a brief
introduction is presented below.

3.1. Experimental setup

Datasets: BDGP is a benchmark dataset with two views. One
is a visual view and another one is a textual view. It contains
2,500 images about Drosophila embryos belonging to 5 cate-
gories. Each image is represented by 1,750-D visual vectors
and 79-D textual feature vectors. MNIST-USPS is a pop-
ular dataset of handwritten digits containing 5,000 samples
featuring two different styles of digit images comprising two
different viewpoints, with each handwritten digit represented
by a 784-D visual vector. UCI dataset consists of features of
handwritten numerals (”0” - ”9”) extracted from a collection
of Dutch utility maps. 200 patterns per class (for a total of
2,000 patterns) have been digitized in binary images.

Baselines: We compare the proposed IMVC-IE with sev-
eral state-of-the-art multi-view clustering algorithms, namely
IMVTSC [17], UEAF [18], HCLS CGL [19]. Meanwhile,
naive IMVC methods based on the Zero-padding and Mean-
padding are also employed as comparison algorithms here.



Table 1. Clustering results in the metric of ACC of different methods with different missing rates (0.5, 0.7, and 0.9). The bold
numbers indicate the best clustering performance.

datasets BDGP MNIST-USPS UCI

missing rate 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

IMVTSC 35.04 32.80 24.92 36.64 26.96 14.22 50.10 37.25 16.60
UEAF 52.72 45.04 27.60 49.52 29.98 14.02 51.15 38.10 16.65

HCLS CGL 47.40 34.64 23.88 67.52 46.20 16.78 64.65 41.95 17.40
Mean-padding 35.52 35.06 21.66 33.02 28.59 13.24 41.87 43.25 15.40
Zero-padding 32.94 27.68 16.28 28.42 21.90 13.36 41.50 27.38 16.28

Ours 64.90 55.18 58.78 71.70 60.65 50.44 64.88 58.58 51.68

Fig. 2. Clustering results in the metric of purity of different methods with different missing rates (0.5, 0.7, and 0.9).

Table 2. Ablation experimental results in the metric of ACC
at a missing rate of 0.5 for each data set.

datasets BDGP MNIST-USPS UCI

missing rate 0.5 0.5 0.5

Without Inference 49.48 42.13 48.16
Without Evaluation 49.20 42.10 47.81

IMVC-IE 69.90 71.70 64.88

To quantitatively show the clustering performance of differ-
ent methods, the clustering results are presented in metrics of
ACCuarcy (ACC) and purity in this section.

3.2. Clustering results and ablation experiments

The incomplete multi-view clustering performance with vari-
ous missing rates, i.e., 0.5, 0.7, and 0.9, can be found in Ta-
ble 1. In general, IMVC-IE achieves the promising cluster-
ing performance in all cases. As shown in Table 1, the best
clustering results can be achieved by our method with differ-
ent missing rates in the metric of ACC. For example, around
4.18%, 14.45%, and 33.66% improvements can be obtained
in MNIST-USPS with missing rates fixed to 0.5, 0.7, and
0.9. Although UEAF gets the slightly better result than our

method in BDGP with 0.9 missing rate in the metric of pu-
rity, the performance of our method is also competitive. Fur-
thermore, our IMVC-IE achieves the considerable improve-
ments in other cases. To verify the effectiveness, we set up
two kinds of ablation experiments, the first one removes the
inference module, i.e., random noise is used to fill the miss-
ing data. The second one removes the evaluation module, i.e.,
Interpolation is randomly selected from the set of simulated
truth data. We conducted the experiments with a 0.5 missing
rate on each dataset. The experimental results in the metric of
ACC are shown in Table 2, which verifies the effectiveness of
DI and DE introduced in our method.

4. CONCLUSION

We propose a novel incomplete multi-view clustering method,
termed IMVC-IE. To overcome the limitations of most exist-
ing IMVC methods, two modules, i.e., Data Inference (DI)
and Data Evaluation (DE) are introduced in our IMVC-IE.
By generating massive alternative samples for missing views
based on DI from the perspective of statistic learning, a proper
sample can be selected by DE to complete the missing view
by investigating the underlying relationships between views.
Experimental results on three real-world benchmark datasets
demonstrate the effectiveness of our algorithm.
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